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1. INTRODUCTION

Initially, optimization and the theory of best approximation developed
independently. However, in the 1960s, with the appearance of convex
analysis, it was realized that best approximation problems can be regarded
as special problems of optimization. This led to a systematic effort to
obtain approximation results as special cases of more general theorems of
optimization theory. This parallel treatment is presented in the
monographs of Holmes [14] and Laurent [17], which illustrate that there
is a strong interaction between approximation theory and what is known
by now as "nonsmooth analysis."

This paper develops along these lines and concentrates on problems of
stability (sensitivity) and stochastic approximation.

In the study of stability our main tool is the so called
Kuratowski-Mosco convergence of sets and the corresponding ,-con
vergence of proper functions. So we perturb the data d~termining the f-best
approximations and the .f-farthest points and we examine how the sets of
these points vary. Such sensitivity analysis is, among other things, very
important in designing efficient numerical algorithms. Additional results in
this direction were recently obtained by the authors in [20].

In stochastic approximation, which is studied in Section 4, we allow both
the set and the function to depend measurably on a parameter wand we
examine the dependence on w of the various notions of approximation
theory. We also study the approximation problem in which the function is
the integral functional determined by f( " . ). In all these our main tools are
the theory of normal integrands of Rockafellar [23, 24] and the theory of
measurable multifunctions.

Finally in Section 5 we have gathered some general results which
illustrate the strong interaction between approximation theory and non
linear analysis.
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Let (Q,.E) be a measurable space and X a Polish space. Let
F: Q ---+ 2X

\ {¢;} be a multifunction (set-valued function) with closed values.
Then the following statements are equivalent:

(i) F- (U) = {w EQ: F(w) n U #- ¢;} E.E for all U c:; X open,

(ii) w---+ dF(w)(x) =inf=EF(w) Ilx-zll is measurable for all XEX,

(iii) there exist measurable functions!:,: Q ---+ X S.t.

F( w ) = cl {fn(w )}11 ~ I for all WE Q (Castaing's representation).

A multifunction satisfying any of the above statements is said to be
measurable. If there exists a complete, IT-finite measure /1( . ) on .E, (i) ---+ (iii)
are all equivalent to

(iv) GrF={(w,X)EQxX:XEF(w)}E.ExB(X), where B(X) is the
Borel IT-field of X.

From now on assume that (Q, .E, /1) is a complete probability space and
X a separable Banach sspace. By X* we will denote its topological dual.
We will use the notations

p/(c)(X) = {A c:; X: nonempty, closed, (convex)},

P(w)k(cj(X)= {A c:;X: nonempty, (w-)compact, (convex)},

where w denotes the weak topology on X. If A c:; X we will denote by IT A( . )

the support function of A, i.e., for all x* E X* IT A(X*) = SUPn A(X*, x).
Consider the set S} = {f( .) E L 1(Q):.f(w ) E F(w) /1-a.e. }, i.e., S} contains

all selectors of F(·) belonging to the Lebesgue-Bochner space L l(Q).
Clearly S}. is a closed (maybe empty) subset of L1(Q). It is nonempty if
and only if intE F(w) Ilxll E L ~ (Q). We will say that F( . ) is integrably boun
ded if and only if sUPnF(w) Ilxll = IF(w)1 EL~(Q). Using Sj we can define
an integral for F( . ),

where Jo!(w) d/1(w) is the usual Bochner integral. This set-valued integral
is known as Aumann's integral. For more details on measurable multi
functions and their integral we refer to Castaing-Valadier [4], Himmel
berg [10], and Rockafellar [23].

Now let us pass to normal integrands. These were introduced and
studied by Rockafellar [23, 24], as the appropriate generalization to
accommodate the needs of optimization and optimal control, of the
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Caratheodory integrands from the calculus of variations. So assume that
f: Q x X --> iR is a proper integrand (i.e., f( ., . ) takes values in ( -X;, + oc J
and fi' +00). We say that f(·,·) is a normal integrand if and only if
w --> epif(w,·) = {(x, A) E X x lR:f(w, x) ~ A} is closed valued and
measurable. A straightforward application of Von Neumann's projection
theorem tells us that the above definition is equivalent to saying that f( ., .)
is I: x B(X)-measurable and f(w, .) is l.s.c. for all WE Q. Recall that nor
mality is preserved by the Fenchel transform. For more details the reader
can look at the excellent survey paper of Rockafellar [23].

As we already mentioned in the Introduction, in the next section we will
be using the Kuratowski-Mosco convergence of sets and the corresponding
!-convergence of proper functions. Very briefly we will recall those notions.
Let {A n,A}n,,1S;2 X and set w-limn~'Y'An={XEX: x=w-limk~cf:Xk'

XkEAnk' k?:l} and s-limn~x An={XEX:x=s-limn~xx,I' xnEA,I'
n?: 1}. We say that the A,.'s converge to A in the Kuratowski-Mosco sense
(denoted by An-->KMA) if and only if w-limAn=A =s-lim An. If
UnJ}n" 1 S; iR X are proper functions then Un }n" 1!-COnverges to f
(denoted by fn-->!f) if and only if epifn-->K Mepif. For more details we
refer to Mosco [19J and Salinetti-Wets [25].

A last piece of terminology. If f E iR x is proper, by domf we denote the
effective domain of f( .), i.e., dom f = {x E X:f(x) < + oo}. Moreover, all
iR-valued functions will be assumed to be proper.

3. STABILITY RESULTS

If fE iR x is a proper function and A S; X nonempty, then we set
fA(X) = infvEA f(x-y) and Pj;A(X) = {hEA:fA(X)=f(x-h)}. The
elements of Pt;A(X) are said to be elements off-best approximation (f-b.a.)
to x from the set A. Throughout this paper we will assume that fA( .) is
proper.

A sensitivity analysis was first conducted by Brosowski-Deutch
Niirnberger [3 J, who considered a family {A t LET of subsets of a normed
space X parametrized by a topological space T and studied the continuity
of t --> P A,(X) (here f( . ) = II ·11). Recently Tsukada [28 J addressed the same
problem but with a nonparametrized method. Namely he allowed the sets
{An}n"l to converge to A in the K-M sense and then examined what
happens to the sequence {P1JX)} n" I. His study was limited to strictly
convex, reflexive Banach spaces.

Our first result examines the behavior of Pt:A(x) under variations of the
set A. Assume that X is a Banach space.
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KM
s.t.An~A,

then for all x E X, w-lim Pt: A)X) £ Pf,A(X).

Proof Let hEw-lim Pt:A)X), Then by definition we can find
hkEPt:Ank(x)s.t. hk~I>h. Let yEA and let YkEAnk S.t. Yk~Sy. This is
possible since An ~ K M A. Then using the properties of f(·) we have

f(x - hk)";;f(x - Yd

= lim f(x - hk),,;; lim{(x - Yk)

=f(x-h)";;f(x-y).

Note that hE A and since yEA was arbitrary we conclude that
hE Pj;A(X). Q.E.D.

Remark. Note that with our assumptions on f( .) we cover the case
where f(·) = 11·11. We could have also assumed that f(·) is w-sequentially
continuous.

Let f( . ) = 11·11. Recall that if X is reflexive and strictly convex then every
A EPj ,(X) is a Chebyshev set, i.e., P A (x) is a singleton for all x E X. Also X
is said to have property (H) if and only if for every X n ~ I> X with
Ilxn II ~ Ilxll we have X n ~s x. Locally uniformly convex spaces (in par
ticular Hilbert spaces) have property (H). Using Theorem 3.1 we can have
the following corollary which is Theorem 3.2(i) of Tsukada [28].

COROLLARY (28). If X is reflexive and strictly convex and
{A,,, A}n;;,t £PrAX) with

as n ~ 00,

then for all XEX, PA)x) ~w PA(x) as n ~ 00.

If in addition X has property (H) then PA)X) ~S PA(X).

Proof Since PA)x), PA(x) n ~ 1 are singletons, the first claim of the
corollary follows directly from Theorem 3.1. Then Ilx-PA(x)11 ,,;;
lim Ilx-PA)x)ll. Let YnEAn S.t. Yn~s PA(x). Then Ilx-Ynll ~
Ilx-PA(x)ll· Since Ilx-PA)x)ll,,;; Ilx-Ynll we get that lim Ilx-PA)x)ll,,;;
IIx - PA(x)ll· Thus Ilx - PA)x)11 ~ IIx - PA(x)11 and because X has property
(H) we get that PA)X) ~s PA(X). Q.E.D.

Remark. In the above proof we also got that dA)·) ~ dA(·).
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Next we will allow f( . ) to vary too. Then we have the following variant
of Theorem 3.1. Assume X if finite dimensional. By bA(') we will denote the
indicator function of A £ X.

THEOREM 3.2. II' {fn,f}II~ 1£ IR x are continuous, convex, fn --+f as
n--+oo and {AII,A}II~l£Pt«(X)s.t. An--+KMA then for all XE

X, lim Pt~.AJX) £ Pt:A(x).

Proof For any x E X, letf,: X --+ IR be defined by fAy) =f(x - y). Then
from Corollary 2E of Salinetti-Wets [25J we have f".x(·) --+ TfA·) as
n--+oo. Also since A n --+ K MA, we have that bAJ·)--+Tb A(·). Note that
domf, - dom bA= IR" - A = IRn. So by Theorem 5 of McLinden-Bergstrom
[18J we get that UII.x+bAJ(·)--+T(f,+bA)(·) ~ (f".x+bAJ*(·)--+T*
(f,+b A)*(·) ~ GrUn.x+bAJ*--+KMGraU,+bA)*(·). But recall that
Pt~.AJX)= aUn.x + bAnJ *(0) and Pt: A(X) = a[I, + bAJ*(0). Hence it
follows easily that lim Pt~.A,,(X) £ Pt:A(x). Q.E.D.

We will close this section, with a result analogous to Theorem 3.1 but for
f-farthest points. Iff E ~ x is a proper function, A £ X is nonempty then we
define]A(x)=sup'EAf(x-y) and Qr:A(x)={hEA:.!A(X)=f(x-h)}. To
avoid trivialities we will always assume that ]A( .) is proper. Let X be a
Banach space. By h( " . ) we will denote the Hausdorff distance on 2x .

THEOREM 3.3. Iff: X --+ IR is continuous, {A n}n~ 1 £ Pk( X) and An --+ h A
as n --+ 00 then for all x E X, ]AJX) --+lA(X) and s-lim Qt:A,,(X) £ Qt:A(X).

Proof First note that A E Pk(X). For any YEA, Let YII E All S.r. YII --+' y.
Then we have f(x-Yn)~lAJx)~f(x-y)~limlAJx)~lA(x)~

lim ]A,,(X). Let hnE An n ~ I S.t. lA,,(X) =f(x - hll ). Observe that
dA(hn)~dAJhn)+h(An,A)=h(A,,,A)--+Oas n--+oo. So dA(hn)--+O. Let
an E A S.t. dA(h n) = Ilh" - anll. By passing to a subsequence if necessary, we
may assume that an --+,1 hE A. Then Ilhn - hll ~ Ilh ll - anll + Ilan- hll --+ O. So
hn --+S hE A. This implies that

lim lAJX) = limf(x - hn)=f(x - h) ~lA(X).

Hence we fin~ally have that]A,,(') --+ lA(')' Ne~t let hk E Qt:A,Jx) k ~ I and
hk --+:....!!:. ThenfA'k(x) = f(x - hd --+ f(x - h) =fA(X) as k --+ 00 ~ hE Qt:A(X)
~ s-lim Qt:A,,(X) £ Qt:A(X). Q.E.D.

4. STOCHASTIC ApPROXIMAnON

Throughout this section assume that (D, L, /l) is a complete probability
space and X a separable Banach space.
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In the first result on the f-approximation of random sets we examine
how the pointwise approximations are related to the aggregate (integral)
approximation. So we will obtain a relation between the functions

fF(wl(X) = inf{j(x - y): y E F(w)}

and

fsAx) = inf {f(X - y): YEt F(W)} .

THEOREM 4.1. F: Q --+ Pf(X) is measurable with S}# cP, f: X --+ IR is l.s.c.,
convex and for all x( . ) E se 1(x) = {x( . ) E LVQ): x = Ja x(w ) dJ1(w )} and all
y(.) E S}, f(x(·) - y(.)) is quasintegrable and integrable for one such pair
(x'('), y'(.)) thenfsAx) = [fafF(wl](x), where fa denotes the operation of
continuous infimal convolution.

Proof From Lemma 2.1 of Hiai-Umegaki [9] we know that
w --+ fF(w/X) is measurable. So the continuous infimal convolution in the
conclusion of the theorem is well defined. Also from the definition of the
Aumann integral we have that

fSF(X)= inf f(x-y)= inf J(x-f y(W)dJ1(W)).
YESF Y(')ESF a

Let x( . ) E se 1(X). Then we have

fSF(X)= infJ(f (X(W)-y(W))dJ1(W)).
Y(')ES F a

Applying Jensen's inequality (see Kozek-Suchanecki [15, Corollary
7.1]) we get that

fSF(X)::;; y( i~fs}t f(x(w) - y(w)) dJ1(w).

Since x(·) E sel(x) was arbitrary we have that

fSF(X)::;; )rfs} t f (X(W)-y(w))dJ1(w).
«.) E 2'1(.<)

640/5211-5
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Applying Theorem 2.2 of [9] we have that

= inf f fFfw)(X(W))dll)=[i fF(Wl] (x).
x( ) E 2,I(x) Q JQ

Hence we have shown that

(1)

(2)

Next let hESQF(w)dll(W) S.t. f(x-h)~fsF(x)+e,e>O. Note that
h=SQh(w)dll(W) with h(·)ES}. Let x(·)=x-h+h(·). Clearly
x(')E2 1(x) and f(x(w)-h(w)) f(x-h)~fsF(x)+e. Also
fF(Wl(x(w))~f(x(w)-h(w)). So we have fF(w)(X(w))~fsAx)+e.

Integrating both sides over Q we get that

tfF(W)(X(W)) dll(W) ~fsAx) + e

= X(l~n~I(X) tfF(w)(x(w)) dll(W) ~fsAx) + e.

Let el O. We have that

[fQfF(Wl] (x) ~fSF(X).

From (1) and (2) we conclude thatfsF(x) = [§QfF(wa(X). Q.E.D.

Remark. If f(·) is such that f(x(·)) is quasintegrable for all
x( . ) E L ~(Q), then the theorem is true for all x E X. This is the case if f( . ) is
bounded from below.

When f(·) = 11·11, then the quasintegrability hypothesis is automatically
satisfied and if F: Q ~ PAX) is as above then:

COROLLARY. For all x E X, dSF(x) = [§Q dF(Wl](X).

For the pointwise approximation problem we can say more. By SF we
will denote the set of measurable selectors of F(·). Also a set A ~ X non
empty is said to be f-proximinal if and only if for all x E X, Pt:A(x) #- 0.
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THEOREM 4.2. Iff: X --+ iR is l.s.c. and F: Q --+ PAX) is measurable with
F( w) being f-proximinal for all WE Q then for all x E X, there exists
h(·) E SFS.t. for all WE Q, fF(w)(X) =f(x- h(w)).

Proof For x E X consider the multifunction w --+ Pf,F«u)(X). By
definition we have that

PU(W)(x) = {h E X:f(x - h) - fF(w)(X) = gAw, h) = O} (l F(w).

Recall that w --+ fF(W)(X) is measurable, while f(x _.) is l.s.c. Hence
gAw, h) being the sum of two normal integrands is normal. Thus

Gr p/:F()(x) = {(w, h): gAw, h) =O} (l Gr FE I: x B(X).

Apply Aumann's selection theorem to find h: Q --+ X measurable S.t.

h(w) E PU(W)(x) for all WE Q. Therefore f(x - h(w)) = fF(wlx). Q.E.D.

Remark. The above result is still true if instead of x E X we have a
measurable function x: Q --+ X.

Next consider the following integral functional

where f: Q x X --+ !hi: is a measurable integrand and x: Q --+ X is measurable.
Additional hypotheses will be introduced later. Let M s Li(Q) and define

!7(x(,))= inf IAx(·)-y(·)).
Y(')EM

Having established this notation consider a multifunction F: Q --+ 2X\ {1> }
S.t. S}# 0. We will examine the following two problems.

(1) For wEQ, find hEF(w) S.t.fF(w)(W, x(w))=f(w, x(w)-h).

(2) Find h(·)ES}S.t. Il}(x(.))=Ir(x(-)-h(.)).

By p/(w.. ).F(w)(X(w)), WEQ we will denote the solution set of problem
(1), while by PIj.S}(X( . )) we will denote the solution set of (2).

Under normality and measurability hypotheses on f(·, .) and F(·),
respectively, we can show as in Theorem 4.2 that w--+Pnw.. j,F(wj(x(w)) is
nonempty, closed valued, and measurable.

Our next theorem compares those two solution sets.

THEOREM 4.3. If f: Q x X --+!hi: is a normal, convex integrand S.t. for all
x(·) E Li(Q),j(·, x(·)) is integrable and F: Q --+ PwkAX) is integrably
bounded, then for any x( . ) E L t(Q) we have PIj.S}(X( . )) = S~rll.FII(X()) and
is a w-compact subset of Li(Q).
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Proof First note that since for all WE Q,j(W, .) E FO(x) = {proper,
l.s.c., convex, ~-valued functions defined on X} and F(w) E Pwkc(X), then
by Weierstrass theorem we have that Pf (w,j,F(wj(X(w))#0. Furthermore
as we already pointed out W --+ Pf(w,j,F(wj(X(w)) is a measurable mul
tifunction, with w-compact, convex values. Also it is integrably bounded
since F(·) is. So from Proposition 3.1 of [21] we deduce that
S~fl,),FI)(X(.j)# 0, is w-compact and convex in Li(Q)·

~t is clear that S~f(,),F()(X())S;Plf'S}(X('))'Let h(')EP1r,s}(x(,)), Then
IjF(x(.))=If(x(-)-h(.)). So we have

f [f(w, x(w) - h(w)) - fF(w)(W, x(w))] djl(w) = O.
Q

Since f(w, x(w)) - h(w)) ~ fF(wj(W, x(w)) jl-a.e. we get that

f(w, x(w)) - h(w)) =fF(W)(W, x(w)) jl-a.e.

= h( . ) E S~j(. I,FI)(X('))'

Thus the claim of the theorem follows. Q.E.D.

Remark. When f( " . ) = 11·11, then the above theorem tells us that for
any x(·) E Li(Q), the best approximation from S} is also a pointwise best
approximation to x(w) from F(w) and vice versa. Furthermore the set of
such best approximations is w-compact in Li(Q).

Working as above we can have an analogous result for f-farthest points.

THEOREM 4.4. Iff: Q x X --+ ~ is 1: x B(X)-measurable and w-u.s.c. in x
and for all x(·)ELi(Q),j(·,x(·)) is integrable, while F:Q--+PwkAX) is
integrably bounded, then Qlf,S}(x(-))=S~j(.I.Fi)(X())for all x(·)ELi(Q).

Theorem 4.3 is useful in obtaining interesting information about the
structure of certain f-proximinal sets.

HfE ~x is a proper function and A a nonempty subset of X, then we say
that A is an f-sun if for each xEX\A there exists hEPf,A(X) S.t.
hE Pf,A(h + A(X - h)) for all A> O. We will say that A is a strict f-sun if this
is true for all hEPf,A(X), Note that iff(·)= 11·11, then the above definition
reduces to the classical definition of solarity of a set (see Vlasov [29]).

As before X is a separable Banach space.

THEOREM 4.5. Iff: Q x X --+ IR is a Caratheodory, sublinear integrand S.t.
for all x(·) E Li(Q),j(·, x(·)) is integrable and F: Q --+ Pwkc(X) is integrably
bounded, then F(w) is an f (w, . )-sun jl-a.e. if and only if S} is an If -sun.
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Proof First assume that S} is a Irsun. This means that for all
x(')EL~(Q) there exists h(')EP1/,s}(x(,)) S.t. h(')EP1r.S}(h(-)+A(X(')
h( , ))) for all A> O. Let x(w ) == x and use Theorem 4.3, to get that

h(w) E p{(w.), F(w)(X) jl-a.e. =h(w) E p{(w,). F(w)(h(w) + A(X - h(w))) jl-a.e.

for all Jc>O, which means that p[(w,),F(w)(X) is anf(w,·) sun jl-a.e.
Now assume that F(w) is an f( w, . )-sun jl-a.e. By definition this means

that for jl-almost all WE Q we have that, for all x E X there exists
hEP[(w,),F(,v)(X) S.t. hEP[(w,.),F(w)(h+A(X-h)) for all ),>0. Let
x(·) E L~(Q) and consider the multifunction r(.) defined by

r(w) = {h E P[(w,l, F(wl(x(w)): hE P{(w,l, F(wl(h + ),(x(w) - h)), A~ O}.

From Govindarajulu~Pai [7] we know that x --+ Pfew, ),F(w,)(X) is U.S.c.
So we can write that

r(w) = n p[(w, .), F(w)(h +A(X(W) -h)),
,,;>0

l = rational

=r( . ) has a measurable graph (see [4, Theorem III-40] ).
Applying Aumann's selection theorem to find h: Q --+ X measurable S.t.

h(w) E r(w) for all WE Q. So we have that

h(w) E p[(w. .), F(wih(w) + A(X(W) - h(w ))), WE Q

= h( . ) E S}(, .l. F(.) (h( . ) + Jc(x( . ) - h( . )))

=h(·) E p1/,s}(h(·) + A(X(' )-h(· ))), A~O.

which proves that S} is an I["sun. Q.E.D.

Now we will pass to the integral functional F: X --+ ~ defined by
F(x) = L·J(w, x) djl(w), where f( ., . ) is a convex integrand. The next result
provides a necessary and sufficient condition for the existence of f-b.a.

Assume that X is a reflexive, separable Banach space.

PROPOSITION 4.1. Iff: Q x X --+ ~ is a normal, convex integrand S.t. for
all x: Q --+ X measurable and bounded,f(·, x(·)) is integrable and A is a non
empty, closed, convex subset of X, then for all x E X we have, hE PF,A(X) if
and only if there exists

X*(')E S~{(, x-h) s.t.X*= f x*(w)djl(w)
Q

and O"A(X*)=(X*, h).
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Proof Note that infvEAF(x-y)=infvEx[F<+JA](Y)' where FAY)=
F(x - y). From convex analysis (see [24]) we know that hE Pt;A(X) if and
only if 0 E o(F< + J A)(h). But from Theorem 23(a) of Rockafellar [24] we
know that F( . ) is continuous, convex. So applying the Moreau-Rockafellar
theorem (see Laurent [17]) we get that

o E o(F< + J A)(h) = oFAh) + oJ A(h).

Observe that oFAh) = -oF(x - h). Also from Theorem 23 (b) of
Rockafellar [24] we know that

of(x - h) = fa of(w, x- h) dfl(W).

So there exits x*( . ) E S1/l . x _ h) s.t. x* = f.Q x*(w) dfl( w) and x* E oJA(h).
Hence (x*, y - h) ~ 0 for all YEA. Thus (J A(X*) = (x*, h). Q.E.D.

Useful for the purposes of numerical analysis is the concept of a.j-best
approximation. We will say that hE A is an a.j-b.a. to x from A if we have
f(x - h) ~fA(X)+ a. We will denote the set of a-f-best approximations to A
by PI: A' For those points we have a result analogous to Proposition 4.1.

Assume that X is a finite dimensional Banach space.

PROPOSITION 4.2. If f: Q x X --+ IR is a Caratheodory, convex integrand
S.t. for all x: Q --+ X measurable and bounded f(·, x(·» is integrable and
A s; X is nonempty, closed, and convex, then hE P} A(X) if and only if there
exists a: Q --+ IR + measurable, a' ~ 0, x*: Q --+ X* measurable S.t. x*(w) E

of(W, X - h) fl-a.e.,

x* = fax*(w) dfl(W),

and

f
£(W)

a(W) dfl(W) + a' = a..Q

Proof Note that

So hE P} A(X) is equivalent to saying that for all yEA we have F(x - h) ~

F(x - y)' + a ¢> -a ~ FAy) - FAh) ¢> -a ~ (F< + (jA)(Y) 
(F<+JA)(h)¢>OEO,(F<+JA)(h). From Theorem 23(a) of Rockafellar
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[24] we know that FA·) is continuous, convex on X. Also from
Hiriart-Urruty [12] [13] we have

a£(F,+6 A)(h)= U {a cI FAh)+a c,6A(h)}.
CJ ?: OE2 ?: 0

';1 + £:2 =£

Moreover, again from [13] we have that

aI:JFAh) = U f a£(w)fAw,h)d/1(w).
£(')E 2'1(,) Q

C(O))?: 0

So 0 E a,(F, + 6A)(h) is equivalent to saying that there exists
z*EJQ a,(wJAw,h)d/1(w) for which -Z*Ea c ,6A(h) and Jo 6(w)d/1(w)+
6'=6, where 6(W)~O. Hence z*=Joz*(w)d/1(w) with Z*(W)E

ac(wJAw,h)/1-a.e. But note that aC(wJAw,h)= -a,(wJ(W, x-h). So
finally we can find x*:Q--+X* measurable S.t. x*(w)Ea£(W)f(w,x-h)W
a.e., x*=JQ x*(w)d/1(w) and X*Ea,,6 A(h) which is equivalent to saying
that (JA(X*)-6'~(x*,h),with Jo 6(w)d/1(w)+6'=6 and 6(W)~O for all
WE Q. Q.E.D.

Next we will have a result analogous to Proposition 4.1 for the integral
functional If ( . ).

Assume X is a reflexive, separable Banach space.

PROPOSITION 4.3. If f: Q x X --+ iR is a normal, convex, integrand S.t. for
all x(·) E Li(Q), If(x(,)) is finite and F: Q --+ PfAX) is integrably bounded,
then for any x( . ) E Li(Q) we have h( . ) E pl/,s}.(x( . )) if and only if

,!pin f (x*(w),y(w)-h(w))d/1(w)~O
X (-)ESexti1( .. X(o)-h(o)) Q

for all y(.) E S~,

Proof As before h(·) E Plf,Sf.(X(-)) if and only if OE aUf'll + as})(h(- )).
Recall that //'1)(') is continuous, convex on Li(Q). So we can apply the

Moreau-Rockafellar theorem and get that 0 E aI/'I)(h( . )) + a6s}(h(- )). This
means that there exists -x*(-)EaI/,()(h(.)) S.t. X*(.)Ea6 s}(h(·)). Since
aI/'I)(h(.))= -aUf(x(-)-h(·)) we have x*(·)EaI((x(.)-h(,)) and
(x*(-),y(·)-h(·))~Ofor all y(·)ESj. Recalling that aI((x(-)-h(·)) is
w*-compact we can write that

min (x*( . ), y( . ) - h( . ))
x'(.) E alf(X(') - h(·»

min (x*( . ), y( . ) - h( . )) ~ O.
x'(·) E ext alfIX(') - hi'))
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From Theorem 2.1 (C) of Rockafellar [24] we know that

OII(x( . ) - h( . )) = Sf,j( .. x(.) _h(.»

=> ext aIf(x( . ) - h( . )) = ext Sf,j(. x(.) _h(.»

Then from Benamara [2] we get that

ext aIf(x(.) - h(·)) = S~taf(. x()-h(»'

Therefore we have that

• ~in J (x*(w),y(w)-h(w))d~(w)~O
x (')Es..,ej(,.xI.)_hl'lI Q

for all y( . ) E S}. Q.E.D.

Remark. In the above result instead of p = 1, q = + (f) we could have
used a pair p, q ~ 1 of conjugate exponents.

We will close our investigation of the multifunction P If. s}( .) with a
theorem concerning its continuity properties.

Assume X is a reflexive, separable Banach space.

THEOREM 4.6. If j: Q x X -+ IR is a Caratheodory, convex integrand S.t.
for all x: Q -+ X bounded and measurable, f(·, x( . )) is integrable and
F: Q -+ PwkJX) is integrably bounded, then P1r,s}(.) is U.S.c. from L1 into
(Ll, w).

Proof We know that for all x(')EL1(Q), Plf.S}(X(·))=S~/(.).FI)(X('))'
So for any x* E X* we have (J PI SI(X*) = (J SI . Then by definition

f' F PII·.).FI)lx(·)1

(JSI (x*)= sup (x*,h(·)),
p/(. ).FI· )Ixl II h( . ) E S'

PfI·. ·I,FI·)lx(·))

where (.,.) denotes the duality brackets between L1 and L';•. Thus we
have that

(JS' (x*)= sup J (x*,h(w))d~(w)
Pj (" ·).FI .jlx(,)) h(.) E S' Q

Pf(·, ·1.FI·)lxl·l)

= f sup d~(w)=f (JPf(,",).F(W)(x(w»(x*)d~(w). (*)
Q hEPf(w,·).Flw)(X(W» Q

Next we will show that x(.) -+ (JPIj,S}<X('»(x*) is u.s.c. on L~. So let
x n ( . ) -+s- L1 x( .). Then by passing to a subsequence if necessary we may
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assume that xn(w) --+' x(w) f.1,-a.e. Using Fatou's lemma and (*) we get that

From Govinarajulu-Pai [7] (Proposition 2.4), we know that
x--+p!(w,),F(w)(X) is W-U.S.c. So Proposition 2 (p.122) of Aubin-Ekeland
[1] tells us that x--+O"P/(W,l.FIW)(X)(x*) is W-U.S.c. So we have

=> lim 0" P 1 (x*) 5:: f 0" (x*) dl/(w)
n.......,. oc Ir,Sf~Xn('» -....:::: Q p!(w,o),F(w)(X(W)) r

= 0" SI «(. »(x*) = 0" PfJ SIIX(. »(x*)
Pfl, ·I.FI·I . . F'

IS U.S.C.

Since P1f,S}(X(·)) has w-compact, convex values in L~, Theorem 10
(p. 128) of [1] tells us that x( . ) --+ PIf,S}( x( . )) is u.s.c. from L ~ into (L~, w).

Q.E.D.

Remark. If for all WE Q, f(w, x) = Ilxll and F(w) is Chebyshev and if
xn{-)--+s-Li x (.) and hn(·) are the best approximations to x n(·) from S~,
then hn{- ) --+ w - Li h( . ) = best approximation to x( . ) from S~.

We will close our study on stochastic f-best approximations, by examin
ing what happens when we consider the conditional expectation of the
integrand f( " . ) with respect to a sub-O"-field 1:0 of 1:.

Assume X is finite dimensional.

THEOREM 4.7. If f: Q x X --+ ~ is a Caratheodory, inf-compact integrand
S.t. for all x E X, SO f(w, x) df.1,(w) ~ +00 and f(w, x) ~ a(w) f.1,-a.e., where
a( .) is integrable and if A ~ X is nonempty, closed, bounded, and convex,
then for all x E X, (EI°f)A(W, x) = EIo fA(W, x) f.1,-a.e.

Proof First recall that for all wEQ, fA(W, .)= [f(w,·) DbA](·) and
since by hypothesis f(w, .) is inf-compact, using Proposition 6.5.5 of
Laurent [17] we deduce that fA (w, .) is proper. l.s.c., and convex. Also
Proposition 2R of Rockafellar [23] tells us that fA ( " .) is 1: x B( X)-
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measurable. Furthermore it is J1-a.e. bounded from below by a(w) which is
integrable. So fA( " . ) is a quasintegrable integrand and so we can consider
its conditional expectation with respect to La. Let B E La, x: Q -> X boun
ded, La-measurable and YEA. We have

t ELOfA(W, x(w)) dJ1(w) = LfA(W, x(w)) dJ1(w) ~ Lf(w, x(w) - y) dJ1(w).

=f ELOf(w, x(w) - y) dJ1(w).
B

Invoking Lemma 6 of Thibault [27] we get that

ELOfA(W, x) ~ ELOf(w, x - y)

for all wEQ\Nv,J1(Nv)=O. Let {Yn}n;./ be dense in X. Then dearly
ELo fA( W, x) ~ EXo f( w, x - Yn) J1-a.e. and so exploiting the continuity of
ELo f(w, .) (see [27]) we have that ELo fA(W, x) ~ ELo f(w, X - y) J1-a.e. =>

ELo fA(W, x) ~ (ELO f)A(W, x) J1-a.e.
On the other hand for all y: Q -> A La-measurable and all x: Q -> X,

bounded, La-measurable and for BELa, we have that

f (ELOf) A(w, x(W)) dJ1(W) ~ f ELo f( W, x(W) - y(W)) dJ1(W)
B B

= Lf(w, x(w)- y(w)) dJ1(w)

=> f (EL°f)A(W, x(w)) dJ1(w)
B

~ inf f f(w,x(w)-y(w))dJ1(w)
Y(')ESiLo) B

= L,i~~ f(w, x(w) - y) dJ1(w)

=f fA (w, x(W)) dJ1(W)
B

As before we get that (ELO f)A(W, x) ~ ELo fA(W, x) J1-a.e. (exceptional set
is independent of x)

Q.E.D.
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Now we change direction and pass to the study of stochastic j-farthest
points. The first result shows that Slf'S}(X('» has a solarity type property.

Assume X is any separable Banach space.

PROPOSITION 4.4. Iff: Q x X -> IR is a Caratheodory, sublinear integrand,
F: Q -> Pr( X) is a measurable multifunction with S} '" 0
yo(-)ES} S.t. Ir(yo('»<oo, then h(')EQlf'S~(X('»
h(·) E Qlr.s}(h(.) + ).(x(·) - h(· ») for all ). > 0.

Proof By definition h( . ) E QII, s}(x( . » means that

and there is a
implies that

i!}(x( . » = Ir(x( . ) - h( .» = t f( w, x(w) - h(w» dll( w).

Also

i!}(x(.» = sup I Ir(x(·) - y(.»
Y(')E SF

sup I 1f( w, x(w ) - y(W» dll( w )
V(')ESF Q

=1 sup f(w,x(w)-y)dll(w).
Q YEF(wl

So we have that

1 sup f(w,x(w)-y)dll(w)= 1f(w,x(w)-h(w»dll(w).
Q YEF(w) Q

Since h(w ) E F(w ) Il-a.e. we deduce that

f( w, x(w ) - h(w» = sup f( w, x(w ) - y) Il-a.e.
yEF(w)

=> h(w ) E Qf(w,). F(w)( x(w » wa.e.

From Proposition 2.8 of Govindarajulu-Pai [8] we know that for all
A> 0, h(w) E Q{(w.l,F(w)(h(w) + A(X(W) - h(w») Il-a.e. So for all Y(')E S}
we have

f( w, h(w) + 2(x(w) - h(w» - y(w» ~f(w, 2(x(w) - h(w») Il-a.e.

=> Ir(h( . ) + ).(x( . ) - h( . » - y( . » ~ If (2(x( . ) - h( .»)

=> h( . ) E Q If. s}(h( . ) + 2(x( . ) - h( . ») for all 2 > 0. Q.E.D.
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The next theorem provides a pointwise necessary condition for h( . ) to be
in Qlj,sj(x(,))),

Assume as before that X is a separable Banach space. If A s; X, by N A(X)
we will denote the normal cone to A at the point x (see Clarke [5]).

THEOREM 4.8. If f: Q x X --+ IR is a k(· )-Lipschitz, L I-measurable
integrand with k( . ) E L 00 (Q) and F: Q --+ P wk,( X) is integrably bounded, then
h(- ) E Q(x( . )) implies that ( - of(w, x(w) - h(w))) (l N F(w)(h( w)) = q) fl-a.e.

Proof We will start by showing that if h(·) E Qlj, sj(x(, )d, then for
some I> 0, h( . ) also solves locally the following maximization problem

sup, [lrX(I-ldsj](z(,)),
=(')E Lx

Suppose not. Then for every n ~ 1 there exists Z n( . ) --+ s- L~h( . ) S.t.

Then Ihl(zn(-)) - Ir'(I(h(.)) > ndsj(zn(-)) and so f3n = ds~zn(-)) --+ 0 as
n --+ 00. Recall that S~ is w-compact in L i. So we can find hn(·) E S~. S.t.
dsj(zn(')) = f3n = Ilzn - hnll l for all n ~ 1. So we have

On the other hand, from the Lipschitzness hypothesis we have that

Ir(x(·) - zn(')) ~ Ir(x(·) -hn(·)) +t k(w) llzn(w) - hll(w)11 dfl(W)

~IAx(·)-hll(·))+ Ilkll w f3Il'

Let n;::" 1 be such that Ilkll 00 ~ n. Then we have

IAX(') - zn(')) -1Jf3n ~ Ir(x(·) - hll (· )). (2)

From (1) and (2) above we produce the desired contradiction. Hence,
knowing that h( . ) solves (*) locally, we can write that

oE o[lr'(1 -Idsj](h( . )),

where the subdifferential here is the generalized subdifferential in the sense
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of Clarke [5]. Recall that Clarke's subdifferential is subadditive. So we
have that

oE oIr"I(h( . » + o[ -lds~](h(. ))

=> 0 E oIr,()(h( . » -I· Ods~(h( .» = -oIr(x(.) - h( . ») -I· Ods}(h( . »)

=> -oIf(x(·) - h(·») n (lods}Jh(· ))) -# 0·

From Clarke [6] we know that oIAx(.)-h(-»~S1f(,x() hi))' Also
note that ds~(') and dF(OJ)(' Hw E D), are Lipschitz, convex functions.
Moreover, it is easy to see that for any v( . ) E L.\-(D)

Thus for h( . ) E S~, we have that

Combining all the above observations we deduce that there exists
x*: D -+ X* s.t.

-x*(W) E of(w, x(w) - h(w») jl-a.e. and x*(w) E IOdF(OJ)(h(w») jl-a.e.

But recall that lodF(OJ)(h(w))~NF(OJ)(h(w)) for all WED. So
x*(w) E N F(w)(h(w)) jl-a.e. Therefore finally we have

(-of(w, x(w) - h(w») n N F(w)(h(w» ~ ¢J jl-a.e. Q.E.D.

Now we turn for a while our attention to the pointwise maximization
problem and we will examine the multifunction w -+ Q!(W,), F(w)(X(w».

As always X is a separable Banach space.

PROPOSITION 4.5. If f: D x X -+ iR is a measurable integrand and
F: D -+ Pf(X) is a measurable multifunction then for all x: D -+ X
measurable, w -+ Qf(OJ.. ),F(w)(x(w» is graph measurable.

Proof By definition we have that

Qf(w.). F(OJ)(X(w» = {h E F(w):f(w, x(w) - h) =IF(w)(x(w))}

= {h E X:f(w, x(w) - h) ~ IF(w)(x(w))} n F(w).

We claim that w -+IF(w)(x(w)) is measurable. To see that let A. > O. Then
we have that IF(w)(x(w))>A. if and only if there exists YEF(w) S.t.

640/52/1-6
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f(w,x(w)-y»X So we can write that {wEQ:f(x(w»),}=
projQ[{(W,y)EQxX: f(w,x(W)-y»A}nGrF]. Recall that
Gr FE L x B(X). Also since f(·,·) is LX B(X)-measurable, we have
{(w,y)EQxX:f(w,x(w))-Y»,}ELXB(X). So their intersection is in
LX B(X). Then the projection theorem tells us that {w EQ:

IF(w)(x(w))>),}EL. Hence w---+1F(w)(x(w)) is measurable. From this we
deduce that (w, h) ---+ ¢>(w, h) = f(w, x(w) - h) - IF(w)(x(w)) is LX B(X)
measurable. Now observe that

Gr Q{( .• . ). F( . )(x( . )) = {(w, h) EQ x X: ¢>(w, h) ? O} n Gr FE L x B( X).

Q.E.D.

An interesting consequence of this proposition is the following result.
Assume that the same set of hypotheses is still in effect.

COROLLARY. If for all WE Q, Q{(w.. ),F(W)(X(W)) # ¢>, then there exists
h: Q ---+ X measurable selector of F( . ) S.t.

IF(w)(x(w)) = f(x(w) - h(w )).

Proof From the previous proposItIOn we know that
Gr Q{(,.), F(. )(x( . )) EL x B(X). Apply Aum~nn's selection theorem to get
h: Q ---+ X measurable S.t. h(w) E F(w) and fF(W)(X(w)) =f(w, x(w) - h(w))
for all WE Q. Q.E.D.

Under mild regularity assumptions on f( " . ), we can have the following
interesting characterization of the pointwise stochastic j-farthest points.

PROPOSITION 4.6. If f: Q x X ---+ ~ is a measurable integrand S.t. for all
WE Q,f(w, .) is proper, convex, u.s. c., and F: Q ---+ PwkAX) is measurable,
then given any x E X, we can find h: Q ---+ X measurable S.t. for all
wEQ, h(w)EextF(w) and h(W)EQ{(w.),F(w)(X(w)),

Proof We saw in the proof of Proposition 4.5 that W ---+ IF(w)(x) IS
measurable. Consider the multifunction G( . ) defined by

G(w) = {h Eext F(w):f(w, x- h) =IF(w)(x)},

From Bauer's maximum principle, we get that for all WE Q, G(w) # 0.
Also Gr G = {(w, h) EQ x X: f(w, x - h) - IF(w)(x) = O} n Gr(ext F). Recall
that the first set in the intersection is in LX B(X), while from Benamara
[2] we know that Gr(ext F) EL x B(X). So we can apply Aumann's selec
tion theorem to find h: Q ---+ X measurable S.t. for all WE Q, h(w) E G(w).
This is the desired h( . ). Q.E.D.

Remark. It is easy to check that this result holds true if instead of a
fixed x E X, we have x: Q ---+ X measurable.
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As with stochastic f-approximations, we will conclude our study of
stochastic f-farthest points,by looking at the conditional expectation of
!A( .) with respect to a sub-a-field Eo of E. The result is analogous to
Theorem 4.7 but our assumptions on the space X and on the integrand
f( " .) are less restrictive. The space X is as always a separable Banach
space.

THEOREM 4.9. If f: Q x X --+ IR is a normal integrand S.t. for all
x( . ) E LVQ), f(·, x( . )) is integrable and there exists a(·) integrable s.t.
f(w, x) ~ a(w) IJ.-a.e. for all x E X and if F: Q --+ Pr(X) is Eo-measurable and
integrably bounded then for all x(·) E L1(Eo) we have

[EEOf]F(W)(W, x(w)) = EEo!F(Wl(W, x(w)) IJ.-a.e.

Proof From Thibault [27] we know that there exists an increasing
sequence of Caratheodory integrands {fn( ., . )} n;' 1 s.t. for all x E X we have
that

f( w, x) = sup fn( w, x) IJ.-a.e.
n";31

So we can write that

JF(W)(W, x(w)) = sup f(w,x(w) - y)
yE F(w)

= sup supfn(w,x(w)-y)
yEF(wln;'l

= sup sup fn(w, x(w) - y) = sup (/n)F(W)(W, x(w)) IJ.-a.e.
n;,l yEF(w) n;,l

Since X is separable and fn(" .) are Caratheodory integrands, we
have that (!n)F(.)(·'·) are ExB(X)-measurable. So Jf,()("')=
SUPn;, 1(In)F()( ., .) is a normal integrand. Furthermore for all x E X,
JF(W)(W, x) ~ a(w) IJ.-a.e. Hence JF()("') is a quasintegrable, normal
integrand and so EEo J( ., . ) exists. Using Proposition 12 of Thibault [27]
we have that for any AEEo and any Y(')ES}{Eo),

f EEo f(w, x(w) - y(w)) dIJ.(w) =f f(w, x(w) - y(w)) dIJ.(W)
A A

=> sup f EEOf(w,x(w)-y(w))
Y(')ES}<Eo) A
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sup f f(w, X(W) - y(W)) dJ1(w)
V(')ES}.<1:0) A

=f SUp f(w, X(W)-y)) dJ1(w)
AyEF(w)

(1)

On the other hand note that

sup f E1:0 f(w), X(W) - y(W)) dJ1(w)
y(.) E S}<EO) A

= f sup EEOf(w, X(W) - y) dJ1(w)
A yEF(w)

(2)

From (1) and (2) above we get that for all A EIo and all x(· )ELi-{Io),

f E1:o!F(W)(W, x(w)) dJ1(w) = f (E£O f )(w, x(w)) dJ1(w).
A A

Invoking Proposition 7 of [27] we conclude that

Q.E.D.

5. GENERAL RESULTS

In this section we have gathered some useful general results about f-best
approximations.

The first result illustrates how fixed point theory can be instrumental in
obtaining interesting results about J-best approximations. Our theorem
generalizes earlier results obtained by Ky Fan [16] and Reich [22].

Assume that X is a locally convex space. We recall that a set A ~ X is
said to be J-approximatively compact if and only if for all x E X, every
minimizing net {hJ (i.e.,j(x-ha)-+fA(x)) has a convergent subnet in A.

THEOREM 5.1. If f:X -+ IR is continuous, sublinear, A ~ X is a nonempty
f-approximatively compact, convex set, and ¢>: A -+ X is continuous with ¢>(A)
compact, then there exists hEA s.t. fA(¢>(h)) =f(¢>(h)-h).
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Proof Consider the multifunction r: A --+ PjA A) defined by
r(y)=(Pf,A 0 t,9)(y)=Pf,A(t,9(y)). From [7, Proposition 2.4] we know that
Pf,A( .) is u.s.c. while t,9(.) is by hypothesis cotinuous. So we deduce that
(Pf, A0 t,9)( . ) is u.s.c. Moreover, we claim that Pf,A( . ) has nonempty, com
pact, convex values. Nonemptiness follows from Proposition 2.1 of [7],
while convexity is a straightforward consequence of the sublinearity of f( . ).
For compactness let {za} be a net in Pf,A(X), Then by definition we have
thatfA(x)=f(x-za). So {za} is trivially a minimizing net in A. Because by
hypothesis A is j-approximatively compact, we can find a subnet {zb} S.t.
Zb --+ Z E A. Also because of the continuity of f(·) we get that
fA(X)=f(x-z). So ZEPf,A(X) and this proves that Pf,A(') is compact
valued. Then since t,9(A) is compact, we have that Pf,A(t,9(A)) is compact.
Applying Himmelberg's fixed point theorem [11], we get that there exists
hEA S.t. hEr(h)=Pf,A(t,9(h))=>fA(t,9(h))=f(t,9(h)-h). Q.E.D.

Remark. When f( . ) =p( .), a continuous seminorm on X, then our
theorem recovers the result of Reich [22].

We will conclude with two propositions on the properties of the mul
tifunction Pf,A( . ). In both X is assumed to be a locally convex space.

PROPOSITION 5.1. Iff: X --+ IR is continuous sublinear and A s;; X is non
empty, f-approximatively compact, closed, and convex, then for any K s;; X
nonempty, connected, Pj,A(K)=UXEKPf,A(X) is connected too.

Proof For all x E X, Pf, A(X) is convex and so connected. Also recall
that Pf,A(') is u.s.c. Hence it maps connected sets to connected set. Thus
Pf,A(K) is connected. Q.E.D.

PROPOSITION 5.2. Iff: X --+ IR is continuous, sublinear and A s;; X is non
empty closed, f-approximatively compact on K s;; X nonempty and compact,
then Pf,A(K) is nonempty, compact and {X,h}EKxA: hEPf,A(X)} is com
pact in Xx X.

Proof Since A is f-approximatively compact on K, for all x E K
Pf, A(X) E Pk(X). Also Pf,A·) is u.s.c. on K. Then the claims of the propo
sition follow from the results of Smithson [26]. Q.E.D.
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